Reductive Electrosynthesis of Crystalline Metal–Organic Frameworks
نویسندگان
چکیده
منابع مشابه
Reductive electrosynthesis of crystalline metal-organic frameworks.
Electroreduction of oxoanions affords hydroxide equivalents that induce selective deposition of crystalline metal-organic frameworks (MOFs) on conductive surfaces. The method is illustrated by cathodic electrodeposition of Zn(4)O(BDC)(3) (MOF-5; BDC = 1,4-benzenedicarboxylate), which is deposited at room temperature in only 15 min under cathodic potential. Although many crystalline phases are k...
متن کاملRecent advances in carbon dioxide capture with metalorganic frameworks
Uncontrolled massive release of the primary greenhouse gas carbon dioxide (CO2) into atmosphere from anthropogenic activities poses a big threat and adversely affects our global climate and natural environment. One promising approach to mitigate CO2 emission is carbon capture and storage (CCS), in which ideal adsorbent materials with high storage capacity and excellent adsorption selectivity ov...
متن کاملTowards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism
Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive mic...
متن کاملCrystalline covalent organic frameworks with hydrazone linkages.
Condensation of 2,5-diethoxyterephthalohydrazide with 1,3,5-triformylbenzene or 1,3,5-tris(4-formylphenyl)benzene yields two new covalent organic frameworks, COF-42 and COF-43, in which the organic building units are linked through hydrazone bonds to form extended two-dimensional porous frameworks. Both materials are highly crystalline, display excellent chemical and thermal stability, and are ...
متن کاملDrug delivery and controlled release from biocompatible metalorganic frameworks using mechanical amorphization
We have used a family of Zr-based metal–organic frameworks (MOFs) with different functionalized (bromo, nitro and amino) and extended linkers for drug delivery. We loaded the materials with the fluorescent model molecule calcein and the anticancer drug a-cyano-4-hydroxycinnamic acid (a-CHC), and consequently performed a mechanical amorphization process to attempt to control the delivery of gues...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Chemical Society
سال: 2011
ISSN: 0002-7863,1520-5126
DOI: 10.1021/ja2041546